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Using the Shvets method, a solution is found to the problem of ignition

of a reacting gas by a heated plate, when the gas is at rest and when
it is moving due to forced or free convection, Analytical expressions
are obtained for the ignition conditions,

We consider a semi-infinite space, full of reacting
gas, bounded on the left by a plate whose temperature
is held constant T = T;, the initial temperature of the
reagent being Ty « T.. We assume that a reaction of
zero order occurs, the thermophysical coefficients
being constant. We set ourselves the problem of
determining the ignition lag for a reacting system of
finite dimensions. A similar problem is of interest
in the theory of ignition of reacting substances and
has been investigated qualitatively in [1, 2], and
numerically in another formulation in [3,4]. Math-
ematically, the problem reduces to solution of the
equation
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—exph (1)
with the boundary and initial conditions
8(0, 1) =0, B(w, 1)=—20, 6( 0)=—8,. (2

In deriving (1) we used the Frank-Kamenetskii
expansion [5] for exp(~E/RT). Since ignition occurs,
as machine calculations for an infinite cylinder have
shown [4], in a thin layer at the heated surface, it
is appropriate to introduce the thermal boundary
layer thickness A(7). Then conditions (2) take the
form

8(0, )=0, B(A, T)=—8, A0)=0. (3)

We shall solve the boundary problem (1)—(3) by
the Shvets method [6], which is known for its good
convergence and simplicity. Introducing the new
independent variable x = z/A, and using the results
of [7}], we may show that for ignition of a layer of
reacting substance, exp 6, does not differ much on
the average from exp(l — 0yx). and so it is natural to
choose as a first approximation the profile 6, = 1 —
— 0y X, by substitution of which on the right side of
(1) we find, taking account of (3), that

2 3 A A
0, = eeAz [1—exp(—8, )] + LI .
0
201 6 A
Mx[eﬁm (1=v) | _fudA ] @)
8 6

By satisfying {4), according to (6), with the con-
dition 98| _ 0, we obtain for A(r) a differential
X =1
equation of the first order, from whose solution,
taking into account the last of conditions (3), we have

A=

- % be(l—v— o)t |
~eol/e(1——v——veo){exp[ e ] NG

In the absence of heat sources [6] A = 2.45v 1. We did
not manage to find further analytical approximations
for ¢ in view of the difficulty of integration.

The ignition process may be represented schemat-
ically, according to [1,4], in this way: the reacting
mixture is first heated, then a maximum temperature
is created, which moves right up to a certain point
when the rate of motion of the maximum falls to zero.
The time of creation of the maximum temperature
corresponds to the end of the heating time, while the
time when the rate of motion of the maximum tempera-
ture falls to zero is the explosion point. The maximum
temperature increases during its motion, and attains
very large values by the time of ignition. Analytically
the explosion conditions may be written as

a8 -0 dx,, |
ox =K, ’ dT =Ty,

=0. (6)

By satisfying (4) with conditions (6), we obtain a
system of two nonlinear equations for A and xyy,,
solution of which gives x,, = const and A = », Then
we obtain the maximum value 0y(x,,) = «. It is easy
to see that A = « when 7, = <. Generally speaking,
the reacting system is ignited during the last time
interval, and 4, = = is evidence of the crudeness of
the second approximation 8, (x, 7). It is important,
however, that the quite crude solution (4) correctly
reflects the essence of the phenomenon. Since the
heating time, according to [4], differs little at large

=0

6 from the time to explosion, the condition

E)

X =0
given by Zel'dovich [8], may be considered as an
approximate ignition condition which is more accurate,
the larger 8. By satisfying (4) with the Zel'dovich
condition [8], we find & = Ay, giving a heating time

Ay = 0y V' 300/e[(2 + v)8o— 3 (1 — )1, (7)
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Variation of 73, y%... A, and Heating Time +;, as a Function of ¢,

t, 1 2

Vi, 2.37 2.93
Vo 0.90 2.24
A, 1.53 2.29
o 0.23 0.60

and with the aid of (5) and (7) we obtain the heating
time

= 6 In 260 (1 —¥)
B Be(I—y—v8) 2+ V)0—3(T—y)]"

(8)

A reacting system of finite size may evidently be
ignited at a given initial temperature Ty, if its dim-
ensionless characteristic size vé > 4. Thus, with
the help of the solution to the problem of ignition of
a semi-infinite reacting space, we may estimate the
ignition conditions and the heating time of a reacting
substance enclosed between two parallel plates, whose
temperatures are T, and Ty. The table gives values
of V&8s, V8u, Ay and 7 for a number of values of
fo.

We found the values of v§, with 1 < 6, < 6 using
the stationary theory of thermal explosion [5], and
values of V3, for 8y > 6 were taken from [7]. The
quantity v54; was determined from the appropriate
formula of {2]. It is interesting to note that, in spite
of the crudeness of 6,, there is good agreement of
V8s and A at large 6y, and that V3, V61,4, increase
linearly, in the main, with increase of 6.

The problem of ignition of a reacting liquid in a
forced convective flow is connected with the problem
of flame stabilization by means of smooth surfaces
and has been examined in [9, 10]. The problem was
solved in [10] for some special cases on a computer,
allowing for variation of viscosity and density with
temperature. In this paper the problem is solved by
the Shvets method [6], using the same values of
thermophysical constants as in [10, 11].

Let there be a stream of viscous reacting gas
with temperature Ty « T, flowing over a plate of
length I and constant temperature T,. We shall
assume that the flow velocity at = is considerably
less than that of sound. We shall neglect burn-up
of the reagent, an assumption which, according to
[10], does not give a large error, even for second-
order reactions. For a given velocity u,, we find the
plate length for which ignition of the reacting gas
occurs. Mathematically, the problem reduces to
solution of the system of equations

0(puv,) L Ipv) _ g (9)
ax, - Oy

du dv d [ ov,
o P g 00 ) . ) (10)
p( | Y op ) an ( o

6 11 18-
5.46 8.9 13.9
9.34 18.2 31.6
5.14 8.8 14.0
3.81 12.0 31.1

pcp(vx Z + v, or )= 2 (k ar )_!-
0xy oy oyx

n E
+ato(cop)"exp (= 7 | 1)
with the boundary conditions

T(x, 0)=T,,

—0,(x1, 0) =0, v,(x1, ©)=tw, U,(xs, ©)=0. (12)

T(xlr W)"——To, Ut(xh 0)=

We note that frictional heat is neglected in (11), as
in (10). Applying the Dorodnitsyn transformation [12]
to the system (9)—(11)

— o - v ]
Yy = s—pdyl’ U, = % +Ux , —9“ dyl: (13)
§ Po- Po o0 Po

eliminating Vy, and reducing the system of equations
to dimensionless form, taking into account the Frank-
Kamenetskii transformation for exp(—E/RT) [5], we
have

dy, (14)

Pu du du g ou
oy? Ox dy ox
0

) Y
2
&9 =P(u 96 a8 y u

dy} —aexp8. (15
oyt dax dy d0x y) P (15)
§

The boundary conditions for the system (14)-(15) have

the form
8(x, 0)=0,
ux, &) =1,

0(x, A)=—8,, u(x, 0)=0,
A, (0) =0. (16)

We take 0 = —0gy/A; as the first approximation for
the dimensionless temperature. Substituting 9y, and
the value of u found in [6], in the right side of (15),
and integrating the resulting expression, allowing
for the first two conditions of (16), we obtain the
second approximation

b, = oA [lﬁexp(_&y_)%

8 As
L \
Pe, [ ¥'x ? (Al 1,
LI T P R ) 17
+ Ay [ 36 A 4 } an
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- (17)
* )]} cont'd

Following [6], we obtain the differential equation
for the determination of 4,

(372 3/2
Px _*,h_w_ﬁ_@._pw( S
36 16128 dx 48
T P P ( Bk Tt VA

13440 i

IfE =, o =0, and we have an equation for the
thermal boundary layer in the absence of reactions
[6]. Dropping the terms in (18) with small coefficients
1/16128, 1/13440, 1/63, and solving the resulting
linear differential equation, we find

A= (48/PY* Vx . (19)
Expression (19) agrees with the corresponding expres-
sion of [6], within the limits of the approximations
made. This is in agreement with the results of [10],
according to which thé boundary layer thickness, with
the reaction taken into account, differs little from the
thickness of the thermal boundary layer when reactions
up to the ignition point are not allowed for. A more
exact investigation, taking the discarded terms into
account, indicates, in agreement with [10], that in
the absence of reaction (& = 0) the boundary layer is
thinner than the thermal boundary layer when heat
release from the reaction (@ = 0) is allowed for. This
is easily verified by applying Chaplygin's theorem
concerning differential inequalities to (18), allowing
for the last of conditions (16). The solution (19) could
be improved according to the method of [13], but
such improvement would not be worthwhile, since
there is substantial error in the measurement of E,
As the ignition condition we shall take, as before, the
Zel'dovich [8] condition, which in this case means
that the heat flux from the heated plate equals zero at
a certain x = xp, i.e., from x = x3 onwards, the plate
is not heating the gas, but, on the contrary, the
reacting gas is heating the plate, owing to the heat
released in the reaction. Satisfying (17) with the
s ars 26
ignition condition ——
0Y ly=o
ing equation and (18) relative to Ay, we have, taking
(19) into account,

x, =0, 00126189 (80P — 3) 83/a P'°.

=0, and solving the result-

(20)

Using (20), we can find the value of I corresponding
to ignition of the reacting mixture at a given point on
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the plate. Knowing I, we can estimate the dwell time
tx = Ixy/u,, of a liquid particle required for ignition,
If x5 > 1, ignition of the reagent does not occur on
the plate, i.e., (20) can serve as the ignition con~
dition, Comparison of (20) with the corresponding
formula of [8] has shown that the two are qualitatively
equivalent and much the same quantitatively. The
ignition cendition will be more accurate if the Frank-
Kamenetskii transformation for exp(E/RT) [5] is not
used. For a first-order reaction we may similarly
obtain

Lx, = [0.00126189 (80P— 3) c i (T, — T,)?] X

E)__

X [akad P [ (—
X

RT, -
— i~ RETO ) IfTO e Rb;‘o)+
el e

and for a second-order reaction we have, correspond-
ingly,

. 000126189 (80P — 3) ¢ tzer (T, — T, )?

= — - . {22
* " gcip ko PT, [Ei(— E/RT,) — Ei (— E/RT )] @2)

Values of % found from (22) agree in order of mag-
nitude with the numerical results of [10], There is

no difficulty, in principle, in examining ignition by
the Shvets method [6] allowing for variation of re-
agent concentration, but the computations are onerous
and the final formulas unwieldy.

In practice any ignition process is connected with
free convection of the reacting substance. We shall
examine ignition by a heated vertical plate at tem-
perature T, washed by a viscous, incompressible
reacting liquid, whose temperature is Tj « T.. We
assume that the thermophysical properties are con-
stant, and that a zeroth-order reaction occurs. Math-
ematically, the problem reduces to solution of the
system of equations

o du
LI v =90, 23
(9)61 ayl ( )
dv v 0% .
v X v £ = x T—T,), 24
e T G eb T =T, (24)
oT oT )
c v v =
o p( ¥ 0x; + Y Jdthy
T
= A 7 + gk, exp(— E/RT) (25)

with boundary conditions

T(xy, 0) =T, T{xs, »)=T,,
::Uyrxh O) = 0,

Uy {#1, O) =

v, (%1, ) =0, (x, x)=0. (26)
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The coordinate origin is located at the lower edge of
the plate, the x axis being along the plate, and the y
axis perpendicular to it, Eliminating vy from the
system (23)~(25) and reducing the system to dimen-
sionless form, taking into account the Frank-Kamen-
etskii transformation [5] for exp(~E/RT), we obtain

*U (U au ou j‘ oU

dq) —8—-0, (27

an? at dn dat
K]
a*9 GL}] 090 ou
=PU - dng)— .
an? ( 3t on j\ 5% Tl) aexph. (28)

The boundary conditions for the system of equations
(26), (27) have the form

]

B(E 0)=0, B(E A;)=—8,
UE 0)=U(E A) =0, A:(0)=0. (29)

We take the first approximations for # and U in the
form

B = — BBz, Uy =8, (/6 Ay —1/2 + A/3)n.  (30)

Substituting (30) into the right side of (28) and integra-
ting the result, taking account of boundary conditions
{29), we obtain the second approximation

aAg[ 8,1
o S (- 22
o 65 exp A, +
P@%Am"( " q 4] )._
A; 2404;  40A, 24
2 A 3

,___7_1_[9 L 88 _PMLAZ_]
A, L0t T (I1—y)+ 18

+

(31)

Following [6], we get the differential equation for
determining A,(£):

11PBY s dA, a(l —y—nv8,) o
Ajm = g+ ———L 107 AT (32
240 ar o7 o (22)

Integrating (32), and taking into account the last of
conditions (29), we have

_ 11P 6} aAT(1—y—v8)
48002 (1 — y — v8,)2 8
—1n[1+ @il —y—1v8,) ]} (33)
6
‘g L ces 00 .
Satisfying the ignition condition Sol = 0, we obtain
7 =0
POi s dA, _ aA}
A = (0, — | —0,. 34
48 2 dt 0 Yo +v) 0 (34)

Eliminating &, from (32) and (34), we find the quantity
Ay = Ay, corresponding to the ignition condition,

Ay = 1663/a(118, — 16 + 16y + 5v8,). (35)
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Substituting (35) into (33), we obtain the quantity §{ =
= ¢y corresponding to ignition

. _ 11P 6 [ 16(1 —y—v8)
=~ "480a*(1 —y— 8, | 116, — 16 + 16y + 5v8,
16(1 —y—v6) :I}
—1n|1 : : (36)
n[ 6, — 16+ 16v + 5v8,

Knowing T, Ty, and the physical and kinetic con-
stants, we can easily find, using (36), the dimension-
less distance from the edge of the plate at which
ignition of the reacting liquid takes place, For a
nonreacting liquid E = «, and it follows from (36)
that £y = «, i.e., in this case there is no ignition.
Therefore, if the dimensionless length of the plate is
greater than &y, ignition occurs, while in the opposite
case there is no ignition of the reacting liquid on the
plate surface.

NOTATION

6=(T~ Ty E/RT%—dimensionless temperature; E—activation
energy; R—universal gas constant; To—temperature of heated plate;
q—thermal effect of reaction, —6p = (Tp = T.) E/RTé—dimensionless
initial temperature and temperature of reacting liquid outside boundary
layer; Ty—initial temperature of liquid and temperature outside bound-

1 .
;A
o= R Re N - Vﬁ"__E ._.____E
ary layer; x = x(/{, y = — i § fo dyy, 2 =xy i Eex}) R b

§=rx (g3 RTYE'®, = y (g8 RTYE v1)"/3 ~dimensionless

coordinates; !-characteristic dimension; x,, y,—dimensional coordi-

nates; ky—preexponent; A—thermal conductivity; V' 3= _;— ( qTE}:L
¢

- exp ( —_ _E__) )l/ 2 —dimensionless characteristic dimension in [7];
. £

v 8, —critical value of ¥ & , at which a real solution of equation (2i)
of [7] still exists; 6,—limiting real solution of (2i) of [7]; Re—~Reynolds
number; 4, 4,, A,~dimensionless thermal boundary layer thickness
for a liquid at rest, forced convection, and free convection, respect-

ively; = _ﬂzﬂ’_ exp (— E )-—dimensionless time; t—time;
Ep Po RT? ‘RT.
Th—heating time; rh—ignition time lag; cp~specific heat at constant
pressure; p,—density at T = Ty; P—Prandtl number; g = GkeCoPIE
U oCpRT?
. exp (~ R‘?' ) —dimensionless plate length; w = A%,  + = exp (— f);
[
: T B 3 1/3
a= P g PygVRe U:ux<———£—§— Y , V= vy(’—;'E—‘z—)
U, Uy g3y RTC g8y RTC'

dimensioniess longitudinal and transverse flow velocity components for
forced and free convection, respectively; cy—initial concentration;
ghoE ( Ev2 (273
2 P ’
A RTC g R Tc )

B—volume expansion coefficient; ¢ =

/ E . . . dA . dA,
- exp (~_R—TT) —dimensionless parameter; A = Ti?; Ay == Tt

. da,

Ay = T Xq,
plate at which reacting liquid ignites, for free and forced convection,
respectively; g—acceleration due to gravity; n—order of reaction; y~

&, —dimensionless distance from edge of heated

viscosity; v—kinematic viscosity at T = T,.
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